Dijkstra's algorithm and L-concave function maximization
نویسندگان
چکیده
Dijkstra’s algorithm is a well-known algorithm for the single-source shortest path problem in a directed graph with nonnegative edge length. We discuss Dijkstra’s algorithm from the viewpoint of discrete convex analysis, where the concept of discrete convexity called L-convexity plays a central role. We observe first that the dual of the linear programming (LP) formulation of the shortest path problem can be seen as a special case of L-concave function maximization. We then point out that the steepest ascent algorithm for L-concave function maximization, when applied to the LP dual of the shortest path problem and implemented with some auxiliary variables, coincides exactly with Dijkstra’s algorithm.
منابع مشابه
MATHEMATICAL ENGINEERING TECHNICAL REPORTS Dijkstra’s Algorithm and L-concave Function Maximization
Dijkstra’s algorithm is a well-known algorithm for the single-source shortest path problem in a directed graph with nonnegative edge length. We discuss Dijkstra’s algorithm from the viewpoint of discrete convex analysis, where the concept of discrete convexity called L-convexity plays a central role. We observe first that the dual of the linear programming (LP) formulation of the shortest path ...
متن کاملSubmodular Function Minimization and Maximization in Discrete Convex Analysis
This paper sheds a new light on submodular function minimization and maximization from the viewpoint of discrete convex analysis. L-convex functions and M-concave functions constitute subclasses of submodular functions on an integer interval. Whereas L-convex functions can be minimized efficiently on the basis of submodular (set) function minimization algorithms, M-concave functions are identif...
متن کاملThe basic idea of Expectation-Maximization
3 The Expectation-Maximization algorithm 7 3.1 Jointly-non-concave incomplete log-likelihood . . . . . . . . . . . 7 3.2 (Possibly) Concave complete data log-likelihood . . . . . . . . . . 8 3.3 The general EM derivation . . . . . . . . . . . . . . . . . . . . . 10 3.4 The E& M-steps . . . . . . . . . . . . . . . . . . . . . . . . . . 12 3.5 The EM algorithm . . . . . . . . . . . . . . . . . . ...
متن کاملThe basic idea behind Expectation-Maximization
3 The Expectation-Maximization algorithm 7 3.1 Jointly-non-concave incomplete log-likelihood . . . . . . . . . . . 7 3.2 (Possibly) Concave complete data log-likelihood . . . . . . . . . . 8 3.3 The general EM derivation . . . . . . . . . . . . . . . . . . . . . 10 3.4 The E& M-steps . . . . . . . . . . . . . . . . . . . . . . . . . . 12 3.5 The EM algorithm . . . . . . . . . . . . . . . . . . ...
متن کاملGlobal Maximization of a Generalized Concave Multiplicative Problem in the Outcome Space
In this work we propose an outcome space approach for globally solving generalized concave multiplicative problems, a special class of nonconvex problems which involves the maximization of a finite sum of products of concave functions over a nonempty compact convex set. It is shown that this nonconvex maximization problem can be reformulated as an indefinite quadratic problem with infinitely ma...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Math. Program.
دوره 145 شماره
صفحات -
تاریخ انتشار 2014